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Abstract

In this paper, we present a unified theoretical view of the so-called “Flocking Rules of
Reynolds” introduced in 1987. No equations describing the rules or mathematical models of
the mobile agents known as “boids” were presented in the original work by Reynolds. We show
how to model a group of autonomous mobile agents by dynamic nets and achieve flocking by
dissipation of the structural energy of the multi-agent system. As a by-product, we obtain a
single protocol called the (α, α) protocol that encompasses all three flocking rules of Reynolds.
We provide geometric interpretations of the advanced forms of some of these flocking rules.
Simulation results are provided that demonstrate flocking of 100 agents towards a sink.

1 Introduction

Flocking is a group behavior of large number of agents with a common objective. In English it is
described as “moving together in large numbers”. In [11], Reynolds introduced three flocking rules
in English that are quoted in the following (after a change in order)

1) “Flock Centering: attempt to stay close to nearby flockmates,”

2) “Obstacle Avoidance: avoid collisions with nearby flockmates,”

3) “Velocity Matching: attempt to match velocity with nearby flockmates.”

These rules describe the behavior of each agent in interaction with other neighboring agents (or
flockmates). The third rule is also known as the “Alignment” rule if read as “attempt to match
attitude with nearby flockmates”. The problem is that expressions like “attempt to stay close” and
“attempt to match velocity” have broad meanings and are open to various interpretations.

The primary reason that it is worth to look deeper for a more specific and analytical form of
these rules is that they in fact led to creation of the first animation of flocking. This animation
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closely resembles flocking by birds. One approach is to express all or some of the three rules
mathematically and then analyze the resulting multi-agent system. This approach is taken by
Vicsek et al. in [12] only for simulation of the “Alignment” rule. A similar approach is pursued
by Helbing et al. [3] for the “escape panic” phenomenon without ever mentioning any connections
to flocking. In the escape panic phenomenon, large number of people flock out of a crowded area
with very few exits. Thus, “escape panic” can be viewed as a special case of flocking. The common
objective of agents in escape panic is to leave a room/building as soon as possible.

Our approach to flocking is fundamentally different and does not rely on direct mathematical
translation of the Reynolds rules. In [6], we partially base our theory on the following principle:
“the primary objective of each agent in a flock is to maintain a fixed inter-agent distance with all
of its neighboring agents.” We refer to each member of a flock as an α-agent and this principle
is called the task of an α-agent. In [6, 10], a theoretical framework is developed for flocking in
presence of multiple obstacles. In particular, a single protocol called the (α, α) protocol is provided
that led to creation of flocking.

The main contribution of this paper is to demonstrate that the (α, α) protocol encompasses all
three rules of Reynolds as special cases. The (α, α) protocol is stated explicitly in a single equation.
We decompose the terms of the (α, α) protocol in two categories, namely, motion planning terms
and velocity matching terms. After stating both type of terms in English, we conclude that the
motion planning terms encompasses the first two rules of Reynolds and the velocity matching terms
are equivalent to the third rule.

Some of the past research related to flocking/swarming can be summarized as follows. An
attitude alignment problem similar to the one in Viscek et al. [12] was recently investigated by
Jadbabaie et al. [4] and a convergence analysis was provided for asymptotic alignment. The use
of gyroscopic forces with connections to flocking is also considered in Chang et al. [1]. To the best
of our knowledge, the analysis of the other two flocking rules with a motion planning nature has
never been presented in the literature. In Liu et al. [5], stability analysis of swarms with fixed
interconnection topology is studied. Furthermore, Gazi and Passino [2] use social potentials to
create cohesion in swarms.

An outline of the paper is as follows: in Section 2 basic notions in a dynamic graph theoretic
framework of flocking are presented. In Section 3, velocity matching or alignment is discussed as
a velocity consensus problem. In Section 4, our main results on the relation between the (α, α)
protocol and Reynolds rules are presented. Simulation results for flocking of 100 agents are given
in Section 5. Finally, in Section 6, concluding remarks are made.

2 Basic Notions: Nets, Flocks, and Dynamic Nets

In this section, we define some basic notions of a theoretical framework for flocking that is presented
in [10, 6]. Consider a set of dynamic agents with dynamics{

q̇i = pi,
ṗi = ui,

(1)

where qi, pi, ui ∈ Rd (e.g. d = 2, 3) denote the position, velocity, and control input of the ith agent,
respectively, with i ∈ I = {1, . . . , n}. Let Bi = B(qi, r) denote a closed ball with radius r > 0
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Figure 1: (a) A spherical neighborhood and (b) a conic neighborhood.

centered at x = qi in Rd. Let A(q) = [aij(q)] be an adjacency matrix with 0, 1 elements defined by

aij(q) =
{

1, qj ∈ B(qi, r),
0, otherwise,

(2)

for all i, j ∈ I. The adjacency matrix A(q) defines a spatially induced graph G(q) = (V, E(q))
called a net. The set of neighbors of node i in the net is defined as Ni(q) = {j : aij(q) > 0}. The
nets induced by spherical neighborhoods are undirected graphs, while the nets induced by conic
neighborhoods are digraphs [10] as shown in Figure 1. A flock is a (weakly) connected net. In
other words, each net consists of a number of flocks that are connected components of the net.

From equation (2), it is clear that the adjacency matrix induced by closed balls is nonsmooth.
To define a smooth adjacency matrix, we redefine the adjacency elements as

aij(q) = ρ(‖qj − qi‖/r) (3)

where ρ : R≥0 → [0, 1] is a smooth influence map [10] given by

ρ(z) =


1, z ∈ [0, δ]
1
2k [1 + cos(π (z−δ)

(1−δ))]
k, z ∈ [δ, 1]

0 otherwise.
(4)

with parameters δ ∈ (0, 1) and k = 1, 2, 3, . . .. One can show that ρ(z) is a Ck-smooth function
with the property that ρ′(z) = 0 over [0, δ) ∪ (1,∞) and |ρ′(z)| is uniformly upper-bounded in
z. Let aij(q) be the influence of node i on node j. Then, node i has no influence on node j if
‖qj − qi‖ ≥ r. This property is the primary reason that renders all the computational algorithms
of this paper distributed. By definition, each node has an influence of 1 on itself.

Remark 1. For future use, without loss of generality, one can assume each node has no influence
on itself. This assumption makes no difference in design and analysis of the cases of interest in this
paper.
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A dynamic net is a net (or graph) with nodes that are dynamic systems. Each node has a state
xi = (qi, pi), input ui, and dynamics ẋi = f(xi, ui) (given in (1)). Similar to mechanical systems,
one can define potential and kinetic energies associated with dynamic nets. In the following, we
provide a justification for our choice of the potential function.

Let us categorize a class of dynamic agents that attempt to maintain a fixed distance dα ∈ (0, r)
from other neighboring agents as α-agents. To be more specific, consider the following set of
algebraic distance-based constraints

‖qj − qi‖ = dα, ∀j ∈ Ni(q) \ {i}. (5)

Any configuration q = (q1, . . . , qn) ∈ Rnd satisfying (5) is called an α-conformation. An α-
conformation is a realization of a structural α-net that is a triplet (n, dα, r). To quantify the
degree in which the configuration of a fixed set of points is close to an α-conformation, we con-
struct a smooth and nonnegative potential function V (q) : Rnd → R≥0. Let ψ(z) : R → R≥0

be a smooth and nonnegative penalty function with a uniformly bounded differential. Then the
following potential function

V (q) =
∑
i6=j

aij(q)ψ(‖qj − qi‖ − dα) (6)

is a nonnegative function that is smooth in all collision-free configurations (i.e. for all

q ∈ Qfree := {q : qi 6= qj ,∀i, j ∈ I}.

Moreover, the gradient ∇V (q) is globally uniformly bounded in q. The key property of V (q) is that

V (q) = 0 ⇐⇒ q is an α-conformation. (7)

Any configuration q induces a net G(q). We refer to the pair (G(q), q) as a framenet. A framenet
(G(q), q) is called an α-framenet if q is an α-conformation. The potential of all α-framenets is zero.
By “potential of a framenet”, we mean potential of its configuration q. The potential V (q) can
be viewed as the “distance” between an arbitrary framenet (G(q), q) and an α-framenet which is
a “desired framenet” satisfying the set of constraints in (5). Examples of α-framenets with n = 4
nodes are shown in Figure 2.

In the next section, we define a kinetic energy Kr(p) that together with potential function V (q)
defines a structural energy (or Hamiltonian) for a dynamic net.

3 Velocity Matching

In this section, we discuss a consensus protocol that achieves velocity matching in a group of
dynamic agents. The main velocity matching protocol used in this paper is a multi-dimensional
and variable topology version of the agreement protocol (9) in [9]. Our approach for achieving
velocity matching is to reduce a non-negative velocity mismatch (or disagreement) function to
zero.

Define the operations Ave(·) and ·̃ on vectors x and xi as x̄ = Ave(x) = (
∑n

i=1 xi)/n and
x̃i = xi − x̄, respectively. Following the idea of disagreement functions in multi-agent consensus
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Figure 2: Four examples of α-framenets.

problems [9, 7, 8], we define the kinetic energy of the dynamic net as the following velocity mismatch
function

Kr(p) =
1
2

n∑
i=1

‖p̃i‖2. (8)

The kinetic energy Kr(p) does not depend on configuration q. The reason Kr(p) is called a velocity
mismatch function is that in case of zero velocity mismatch, or Kr(p) = 0, we have p̃i = 0 for all
i ∈ I. This means that the velocities of all the agents are equal to p̄ and thus match.

Note 1. Since, we assume aii(q) = 1 for all i, it turns out that each node is its own neighbor, i.e.
i ∈ Ni(q) and therefore |Ni(q)| ≥ 1. We use the notation N̂i = Ni \ {i} to refer to the neighbors of
node i other than itself.

Here is the main use of the velocity mismatch function:

Proposition 1. (velocity matching protocol) Assume each dynamic agent in (1) applies the fol-
lowing velocity consensus protocol for dimension d ≥ 2

uvm
i = c

∑
j∈Ni(q)

(pj − pi), c > 0 (9)

In addition, suppose there exists a time T > 0 such that G(q(t)) is a flock for all t ≥ T . Then, the
velocity of all agents asymptotically converge to Ave(p(0)) and match.

Proof. Let u = uvm (the superscript vm stands for “velocity matching”). Since
∑

i ui = 0 for
all t, Ave(p(t)) is and invariant quantity and thus equal to p̄(0) = Ave(p(0)). Thus, ˙̃pi = ui for
all i. Let Ā(q) = [āij(q)] be the adjacency matrix of the net G(q) with 0, 1 elements defined by
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āij(q) = daij(q)e (d·e denotes the ceiling function). Define the nd × nd matrix Â(q) = Id ⊗ Ā(q)
(⊗ denotes the Kronecker product) and let L(q) be the Laplacian matrix associated with the
adjacency matrix Â(q) (i.e. the diagonal matrix of the row sums of Â(q) minus Â(q)). It turns out
that u = −cL(q)p where L(q) is a symmetric Laplacian matrix for all q satisfying L(q)p = L(q)p̃
and the following sum of squares (SOS) property holds

pTL(q)p =
1
2

∑
ij∈E(q)

‖pj − pi‖2 (10)

where ‖ · ‖ denotes the 2-norm in Rd. Given the velocity consensus (or matching) protocol, we have

K̇r = p̃Tu = −cp̃TL(q)p̃ ≤ 0, ∀t ≥ 0 (11)

which means the velocity mismatch dynamics

˙̃p = −cL(q)p̃ (12)

is stable. Due to the assumption that G(q(t)) is a connected graph for all t > T , L(q(t)) has rank
n− 1 for all t > T and

K̇r = −cp̃TL(q)p̃ < 0,∀p̃ 6= 0 (13)

Thus, Kr(p) is a valid Lyapunov function for the velocity mismatch dynamics for all t > T and p̃
globally asymptotically converges t o zero. In other words, the velocity of all agents asymptotically
match.

Remark 2. In the proof of Proposition 1, notice that p̃TL(q)p̃ = 0 implies p̃i = p̃j for all the edges
ij ∈ E(q). If G(q) is connected, then all the p̃i’s are equal. But

∑
i p̃i = 0, thus p̃ = 0. This

argument proves that for a connected graph p̃TL(q)p̃ > 0 for all p̃ 6= 0.

Remark 3. Given the velocity matching protocol in Proposition 1, one can show that ‖p(t)‖ remains
uniformly bounded for all t ≥ 0. This follows from the fact that

d

dt
|‖p(t)‖2 = pTuvm = −pTL(q)p ≤ 0. (14)

Thus, ‖p(t)‖ ≤ ‖p(0)‖, for all t ≥ 0.

Remark 4. The velocity matching protocol in (9) can be replaced with

uvm
i = c

∑
j∈Ni(q)

aij(q)(pj − pi), c > 0 (15)

with uvm
i = 0 for Ni(q) = ∅ and the result of Proposition 1 would still hold. The proof follows the

same line of argument with a minor difference that L(q) is the Laplacian matrix of the weighted
adjacency matrix Id ⊗A(q) and the following weighted SOS property holds:

pTL(q)p =
1
2

∑
ij∈E(q)

aij(q)‖pj − pi‖2 (16)
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According to the velocity matching protocol in (9), we have

uvm
i = c|Ni(q)|

(∑
j∈Ni(q)

pj

|Ni(q)|
− pi

)
= k(q)(pav

i − pi) (17)

with k(q) = c|Ni(q)| ≥ c > 0 and pav
i =

∑
j∈Ni(q)

pj/|Ni(q)|. Therefore, the velocity of each agent
changes towards the average velocity of its neighbors. For the special case of a node that has no
neighbors other than itself, or an isolated node with Ni(q) = {i}, we get k(q) = c > 0 and pav

i = pi.
As a result, uvm

i = 0 and an isolated agent moves along a straight line.
In [12], an alignment version of the rule in (17) was studied where all the velocities are replaces

by heading angles of the agents. This rule alone has to do nothing with flocking. However, if the
density of the agents in a restricted area is relatively high, the net becomes connected and all the
agents asymptotically match their velocities and therefore move towards the same direction. This
group behavior might be perceived as flocking by some researchers [12]. Here, we do not consider
such a group behavior as flocking where no configuration-dependent constraints are desired to be
satisfied by the agents.

An interesting phenomenon occurs whenever there is low density of agents in a restricted area
of initial positions. This leads to disconnectivity of the net G(q(t)) at time t = 0 and (perhaps)
future times. Such disconnectivity of the net creates smaller flocks of agents or “Islands of Agents”.
In each island, all the agents asymptotically move towards the same direction. However, the islands
as a whole incohesively disperse in different directions depending on the average values of the initial
velocities of agents in each flock. Apparently, some of these flocks might merge upon inter-flock
collisions and form larger flocks. Two flocks collide whenever one agent from one flock becomes
the neighbor of an agent in the other flock.

4 The (α, α) Flocking Protocol and Reynolds Rules

Consider the following structural energy of a dynamic net

Hs(q, p) = V (q) +Kr(p), (18)

where

V (q) =
n∑

i=1

∑
j∈Ni(q),j 6=i

aij(q)ψα(‖qj − qi‖ − dα) (19)

and the penalty function ψα(z) is a scalar function in the form

ψα(z) =
a+ b

2
[
√

1 + (z + c)2 −
√

1 + c2] + (
a− b

2
)z (20)

with uniformly bounded derivative and parameters b > a > 0 and c = (b− a)/2
√
ab.

Remark 5. This choice of ψα(z) guarantees that σα(z) = ψ′α(z) given by

σα(z) =
a+ b

2
z + c√

1 + (z + c)2
+
a− b

2
(21)

is an asymmetric sigmoidal function satisfying the properties σα(0) = 0, zσα(z) > 0,∀z 6= 0,
limz→+∞ σα(z) = a, and limz→−∞ σα(z) = −b. As a result, the potential ψα(‖qj − qi‖ − dα)
between two neighboring agents is more repulsive than attractive because of a < b.

7



Remark 6. The use of inter-agent potentials that are more repulsive than attractive is crucial in
avoiding a negative phenomenon that creates “Dense Islands of Agents” where the agents remain
tightly close to each other in each island (i.e, small flock).

According to [10], given a state feedback u = k(q, p), flocking is achieved for a dynamic net
with structural energy Hs(q, p) if the following conditions hold:

i) the structural energy Hs(q(t), p(t)) is rendered monotonically decreasing, i.e. Ḣs ≤ 0,

ii) the structural energy Hs(q(t), p(t)) asymptotically vanishes,

iii) the net G(q(t)) asymptotically becomes a flock.

In [6, 10], dissipation of structural energy is proposed as an approach to achieve flocking. Fur-
thermore, the following distributed state feedback

ui =
∑

j∈N̂i(q)

φα(‖qj − qi‖ − dα)nij + cd(pj − pi), cd > 0 (22)

called the (α, α) protocol for a detailed analysis) was used to render the system dissipative (see [6]
for a detailed analysis). Here, N̂i is the set of neighbors of agent i excluding itself, cd > 0 is a
dissipation coefficient, nij is the unit vector connecting qi to qj 6= qi, and φα : R → R is an action
function (i.e. the derivative of a penalty function) defined by

φα(z) =
dψ̂α(z)
dz

, ψ̂α(z) = ρ(
z + dα

r
)ψα(z). (23)

Apparently, the first term in (22) is a gradient-based term due to the objective of an α-agent.
We refer to this term as the motion planning term and denote it by

ump
i =

∑
j∈N̂i(q)

φα(‖qj − qi‖ − dα)nij . (24)

The (α, α) protocol can be expressed as the sum of a motion planning term and a velocity
matching term, i.e.

ui = ump
i + uvm

i , ∀i ∈ I. (25)

In the following, we demonstrate that the first and second rules of Reynolds can be interpreted as
special cases of the motion planning term of the (α, α) protocol in (22).

Let us define a set of weights associated with the edges of a net called the stress weights [10] as

sij(q) =
φα(‖qj − qi‖ − dα)

‖qj − qi‖
, qj 6= qi, j ∈ Ni(q) \ {i} (26)

and sij(q) = 0, otherwise. Using this notation, the motion planning term of the (α, α) flocking
protocol can be written as

ump
i =

∑
j∈Ni(q)

sij(q)(qj − qi) (27)

which allows one to interpreter the (α, α) protocol as a distributed PD Controller with nonlinear
state-dependent gains.

8



The netG(q) with adjacency elements sij(q) can be viewed as a spatially induced weighted graph
with sign indefinite weights. The Laplacian of such graphs are no longer positive semidefinite. Let
S(q) = [sij(q)] be the stress matrix of the net G(q). We define three new sets of neighbors called
friends for an agent. The friends of an agent are determined by the stress matrix. Define the set
of positive, negative and neutral friends of agent i as

F+
i = {j ∈ Ni(q) : sij(q) > 0}, (28)
F−i = {j ∈ Ni(q) : sij(q) < 0}, (29)
F 0

i = {j ∈ Ni(q) : sij(q) = 0} (30)

respectively. We have Ni(q) = F+
i ∪F−i ∪F 0

i and i ∈ F 0
i , i.e. each agent is a neutral friend of itself.

Define the local stress of agent i as the sum

Si(q) =
∑

j∈Ni(q)

sij(q) = S+
i (q) + S−i (q). (31)

with S±i (q) =
∑

j∈F±i
sij(q). Notice that by definition S+

i (q) > 0 and S−i (q) < 0. The following
two cases arise:

Case i) Si(q) 6= 0: In case of a nonzero local stress for agent i, we can define the center of neighbors
(CON) of agent i as the following weighted sum of the positions of its neighbors other than
itself

qav
i =

1
Si(q)

∑
j∈Ni(q)

sij(q)qj (32)

and the motion planning term can be rewritten as

ump
i = Si(q)(qav

i − qi) (33)

which means agent i moves towards/away from the center of its neighbors depending on the
sign of its nonzero local stress. The last expression in italic that is the description of the
motion planning term in (33) encompasses both the “Flock Centering” rule and the “Collision
Avoidance” rule of Reynolds.

The geometric interpretation of the motion planning term in (33) can be stated as follows.
Define the center of positive and negative friends of agent i as follows

qav+
i =

1
S+

i (q)

∑
j∈F+

i (q)

sij(q)qj , (34)

qav−
i =

1
S−i (q)

∑
j∈F−i (q)

sij(q)qj . (35)

Then
qav
i = λ1q

av+
i + λ2q

av−
i , (36)

with λ1,2 := S±i (q)/Si(q) satisfying λ1 + λ2 = 1, i.e. agent i with nonzero local stress applies
an input (or moves) towards/away from the direction of the line connecting qi to a point

9
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Figure 3: The action of agent i under different local stresses: (a) Si(q) 6= 0, (b) Si(q) = 0 and
ump

i = 0, and (c) Si(q) = 0 and ump
i 6= 0.

in the convex hull of the center of positive friends of i and the center of negative friends
of i depending on whether λ1 > 0 or λ2 > 0. This rule is schematically demonstrated in
Figure 3(a). Node i = 7 has three negative and three positive friends. A force along the
vector connecting qi to qav

i (marked by a filled square) is applied to agent i. The centers of
positive and negative friends are marked by unfilled squares. To show that the scenario in
Figure 3(a) is realistic, let dj denote the distance between agent i and agent j for j = 1, . . . , 6
and assume dj < dj+1. In addition, suppose dα satisfies d3 < dα < d4. Then, the sets
of signed friends of agent i are determined as follows: F−i = {1, 2, 3}, F+

i = {4, 5, 6}, and
F 0

i = {i}.

Case ii) Si(q) = 0: In this case, the local stress of agent i is zero and therefore S+
i (q) = −S−i (q). If

agent i has no positive (or negative) friends, then ump
i = 0 and agent i with ui = ump

i does
not change its velocity (Remark: in reality due to velocity matching term, agent i still might
change its velocity). An example of this scenario is shown in Figure 3(b) with the condition
that each edge of the hexagon is of length dα.

Now, suppose agent i at least has one positive friend. Then, due to S+
i (q) = −S−i (q) > 0, it

should at least have one negative friend as well. Assume F+
i (q) 6= ∅, we get

ump
i =

∑
j∈Ni(q)

sij(q)qj − Si(q)qi

=
∑

j∈F+
i

sij(q)qj +
∑

j∈F−i

sij(q)qj

= S+
i (q)qav+

i + S−i (q)qav−
i

10



which due to S+
i (q) = −S−i (q) > 0 can be expressed as

ump
i = S+

i (q)(qav+
i − qav−

i ). (37)

Equation (37) can be translated as follows: agent i applies an input (or moves) along the
direction of the vector connecting the center of negative friends of i to the center of positive
friends of i. Note that qav±

i is inside the convex hull of the positions of the positive/negative
friends of agent i.

This scenario in case ii) is schematically shown in Figure 3(c) for agent i with one positive
friend and one negative friend. Assume that the distance between these two friends is 2dα.
Assuming that each edge of the hexagon in Figure 3(c) is of length dα, the set of singed
friends of agent i can be specified as F−i = {1}, F+

i = {2}, and F 0
i = {i}. Since there is only

a single positive (negative) friend, the center of positive (negative) friends is the position of
the positive (negative) friend. In Figure 3(c), The motion planning term ump

i is aligned with
the vector connecting these two signed friends.

Remark 7. In Figure 3(c), let d1 and d2 denote the distance between qi and agents 1 and 2. The
set of points qi in R2 with zero local stress satisfy

φα(d1 − dα)
d1

+
φα(d2 − dα)

d2
= 0. (38)

Apparently, d1 = d2 = dα is a trivial solution of this equation.

If the velocity of agent i is equal to all of its neighbors, then uvm
i = 0 and ui = ump

i which
encompasses the first two rules of Reynolds. On the other hand, if all the friends of agent i are
neutral friends, then ump

i = 0. Thus, in this case, ui = uvm
i . A relative equilibrium is reached

whenever all the friends of agent i are neutral friends and the velocity of i matches the velocity of
all of its neighbors.

We have established that the (α, α) protocol encompasses more sophisticated versions of all
three flocking rules of Reynolds introduced in [11]. The (α, α) protocol is only valid for flocking in
lack of any obstacles. For flocking with obstacle avoidance, two other types of agents called β and
γ agents are introduced in [6].

Remark 8. The “Obstacle Avoidance” rule of Reynolds has to do nothing with avoiding collision
to environmental obstacles. Instead it has to do with collision between an agent and its nearby
flockmates. The motion planning term performs this agent-to-agent collision avoidance in a prac-
tical sense. By “practical”, we mean each agent makes an “attempt” to avoid collision to other
nearby flockmates. This attempt might or might not be successful to avoid a collision. Therefore,
achieving practical agent-to-agent collision avoidance does not mean that no collisions would occur
among the agents.

The scenario in case ii) is new and has not been foreseen in the work of Reynolds [11]. In fact,
no equations were presented by Reynolds that specify the flocking rules. Therefore, it is hard to
imagine that the advanced versions of each rule of Reynolds with state-dependent weights could
be predicted from the work in [11]. The justification presented in [11] for “Flock Centering” was
that all agents try to stay near the center (i.e. average position) of the flock members. Since
no agent knows the center of the overall flock, “each agent moves towards the center of all of its
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neighbors”. It is obvious that the derivation of the motion planning term of the (α, α) protocol has
to do nothing with simple intuitive reasonings by Reynolds [11]. The weights used to calculate this
“center of neighbors” are not arbitrary or constant in our work. Here, the weights are provided
in explicit form and the convergence (or stability) analysis presented in [6] justifies the proposed
(α, α) flocking protocol.

The following result shows that the (α, α) protocol for the overall flock is a PD controller with
matrix-gains that are state-dependent graph Laplacians.

Proposition 2. The (α, α) protocol for the flock as a whole can be expressed in the following form

u = −Ls(q)q − cdL(q)p = −Ls(q)q̃ − cdL(q)p̃, cd > 0 (39)

where Ls(q) and L(q) are the Laplacian matrices associated with the adjacency matrices Id ⊗ S(q)
and Id ⊗ Ā(q).

Proof. The proof follows from the fact that the motion planning term and the velocity matching
term of the (α, α) protocol have identical forms given by

fi =
∑
j∈Ni

wij(xj − xi), xi ∈ Rd,∀i

with the difference that wij = sij(q) and xi = qi for the motion planning term and wij = āij(q) =
daij(q)e and xi = pi for the velocity matching term. The Kronecker product of the d × d iden-
tity matrix with the adjacency matrix is necessary to create a Laplacian matrix with appropriate
dimensions.

5 Simulation Results: Flocking Towards a Sink

Consider a group of n = 100 α-agents starting from random initial positions with zero initial
velocities. The desired task is to perform flocking in presence of a sink at (qd, pd) = (0, 0) and in
lack of any environmental obstacles. According to [6], the following translational PD controller

fi = −c1qi − c2pi, i ∈ I, c1, c2 > 0 (40)

has to be added to the control from the (α, α) protocol. The α-agents need to maintain an inter-
agent distance equal to dα = 7 with r = 1.2dα. Figure 4 shows an initially disconnected net that
evolves into a flock after going through a finite number of switching events that add more edges to
the initial net. The topology of the flock is asymptotically invariant. One of our future objectives
is to prove that the combination of the (α, α) protocol and the translational controller in (40) leads
to automatic assembly of connected mobile networks of agents.

6 Conclusion

This work relies on a dynamic graph theoretic framework for flocking developed by the author in
[6, 10]. The primary flocking protocol that is used for flocking in lack of environmental obstacles
is called the (α, α) protocol [6, 10]. This protocol describes the behavior of an α-agent in its
interactions with other neighboring α-agents.
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In this paper, we demonstrated that the (α, α) protocol encompasses all three flocking rules of
Reynolds as special cases. A geometric interpretation of the motion planning term of the (α, α)
protocol was given.

We showed that the (α, α) protocol for the flock as a whole is a PD controller with state-
dependent matrix-gains that are graph Laplacians. These Laplacian matrices are determined by
the stress matrix and the upper-truncated adjacency matrix of the net. Moreover, two negative
phenomena in flocking were discussed. Specifically, creation of disconnected and dense islands of
agents. Both of these phenomena lead to creation of multiple flocks that incohesively disperse in
different directions. Simulation results are provided that demonstrate flocking for 100 agents in
presence of a sink.
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Figure 4: Consecutive snapshots of conformation of a flock from a net via flocking of n = 100
agents in presence of a sink at (0, 0).
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